The inter-kingdom volatile signal indole promotes root development by interfering with auxin signalling.
نویسندگان
چکیده
Recently, emission of volatile organic compounds (VOCs) has emerged as a mode of communication between bacteria and plants. Although some bacterial VOCs that promote plant growth have been identified, their underlying mechanism of action is unknown. Here we demonstrate that indole, which was identified using a screen for Arabidopsis growth promotion by VOCs from soil-borne bacteria, is a potent plant-growth modulator. Its prominent role in increasing the plant secondary root network is mediated by interfering with the auxin-signalling machinery. Using auxin reporter lines and classic auxin physiological and transport assays we show that the indole signal invades the plant body, reaches zones of auxin activity and acts in a polar auxin transport-dependent bimodal mechanism to trigger differential cellular auxin responses. Our results suggest that indole, beyond its importance as a bacterial signal molecule, can serve as a remote messenger to manipulate plant growth and development.
منابع مشابه
Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis.
Trichoderma species belong to a class of free-living fungi beneficial to plants that are common in the rhizosphere. We investigated the role of auxin in regulating the growth and development of Arabidopsis (Arabidopsis thaliana) seedlings in response to inoculation with Trichoderma virens and Trichoderma atroviride by developing a plant-fungus interaction system. Wild-type Arabidopsis seedlings...
متن کاملCyclic GMP is involved in auxin signalling during Arabidopsis root growth and development
The second messenger cyclic guanosine 3',5'-monophosphate (cGMP) plays an important role in plant development and responses to stress. Recent studies indicated that cGMP is a secondary signal generated in response to auxin stimulation. cGMP also mediates auxin-induced adventitious root formation in mung bean and gravitropic bending in soybean. Nonetheless, the mechanism of the participation of ...
متن کاملRole of cytokinin and auxin in shaping root architecture: regulating vascular differentiation, lateral root initiation, root apical dominance and root gravitropism.
BACKGROUND AND AIMS Development and architecture of plant roots are regulated by phytohormones. Cytokinin (CK), synthesized in the root cap, promotes cytokinesis, vascular cambium sensitivity, vascular differentiation and root apical dominance. Auxin (indole-3-acetic acid, IAA), produced in young shoot organs, promotes root development and induces vascular differentiation. Both IAA and CK regul...
متن کاملA role for the root cap in root branching revealed by the non-auxin probe naxillin.
The acquisition of water and nutrients by plant roots is a fundamental aspect of agriculture and strongly depends on root architecture. Root branching and expansion of the root system is achieved through the development of lateral roots and is to a large extent controlled by the plant hormone auxin. However, the pleiotropic effects of auxin or auxin-like molecules on root systems complicate the...
متن کاملThe Nitrification Inhibitor Methyl 3-(4-Hydroxyphenyl)Propionate Modulates Root Development by Interfering with Auxin Signaling via the NO/ROS Pathway.
Methyl 3-(4-hydroxyphenyl)propionate (MHPP) is a root exudate that functions as a nitrification inhibitor and as a modulator of the root system architecture (RSA) by inhibiting primary root (PR) elongation and promoting lateral root formation. However, the mechanism underlying MHPP-mediated modulation of the RSA remains unclear. Here, we report that MHPP inhibits PR elongation in Arabidopsis (A...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Plant journal : for cell and molecular biology
دوره 80 5 شماره
صفحات -
تاریخ انتشار 2014